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Abstract

We model the pressure distribution around cylindrical objects in simple shear deformation using the ®nite element method in two

dimensions and present an analytical solution for a special case. Parameter space is explored numerically for viscosity contrast between

object and matrix, h , and for the non-linearity of ¯ow, as expressed by n. We show that the geometry and size of the pressure shadow is

independent of h , but strongly dependent on n. For example, at n� 1, pressure shadows are roughly circular in shape, while for n . 1,

pressure shadows disintegrate into two branches. We also show that pressure may only exceed 100 MPa in pressure shadows at resolvable

distances from the object if h . 4 for strain rates of 10214 s21 and matrix viscosities around 1022 Pa s. As these values for strain rate, viscosity

and viscosity contrast are geologically reasonable, we emphasise that it is conceivable that geobarometric results obtained from syndeforma-

tional mineral parageneses near rigid porphyroblasts may be in¯uenced by non-lithostatic components of pressure. q 2001 Elsevier Science

Ltd. All rights reserved.

1. Introduction

The magnitude of the ¯ow stresses in the Earth's crust is

one of the most important parameters governing dynamical

processes in continents. Accordingly, many authors have

attempted to constrain their magnitude. There has been

some debate about their magnitude, however, ranging

from studies attributing a signi®cant contribution of

`tectonic overpressures' to the formation of metamorphic

parageneses (Rutland, 1965; Ernst, 1971; Mancktelow,

1993; Petrini and Podladchikov, 2000) to those studies

that have concluded that differential stresses are negligible

for the barometric interpretation of metamorphic rocks (e.g.

Gleason and Tullis, 1995). Some studies have shown,

however, that even small differential stresses can be relevant

for the interpretation of metamorphic parageneses under

some circumstances (StuÈwe and Sandiford, 1994). Despite

this active debate, most petrological studies now assume

that the stress state of the Earth is near lithostatic and baro-

metric results can be translated directly into the crustal

depth of metamorphism.

Despite this assumption, there is abundant evidence in

rocks that stresses, and therefore pressures vary on a local

scale. For example, the existence of pressure shadows, strain

caps, strain fringes, winged porphyroclasts and delta objects

all testify to the existence of local stress ¯uctuations.

Indeed, any fabric development would be impossible with-

out local stress variations and a number of authors have

discussed the stresses during heterogeneous deformation

on a local scale, for example during folding (StroÈmgaÊrd,

1974) or boudinage (StroÈmgaÊrd, 1973; Selkman, 1978).

Palaeopiezometric studies have attempted to constrain the

magnitude of such local stress variations in rocks using a

variety of observations, for example grain size (Edward

et al., 1982; Koch, 1983). Such paleopiezometric studies

are generally performed using single phase rocks. Most

observations on local pressure variations are made in poly-

phase rocks, however, for example observations on the

formation of mineral parageneses in pressure shadows

behind porphyroblasts (Fig. 1). Observations of this sort

pose the question how large these pressure shadows are.

An answer to this question will be of direct relevance to

any geobarometric interpretation of reaction textures like

those shown in Fig. 1.

In this paper we evaluate the geometry, size and magni-

tude of pressure shadows around cylindrical objects in order

to contribute to this debate. This general theme has been

dealt with in the past (Shimamoto, 1975; Masuda and Ando,

1988; Masuda et al., 1995; Masuda and Mizuno, 1996;

Pennacchioni et al., 2000). The studies of Masuda and his

co-authors, however, have assumed an in®nite rheology
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contrast between object and matrix. This is in contrast with

many observations in real rocks which almost always show

that the objects around which pressure shadows form may

also behave in a ductile manner (e.g. Ji and Martignole,

1994; Passchier and Trouw, 1996). Thus, we explore here

the pressure distribution around objects of a ®nite rheology

contrast with the matrix. Moreover, some geologically

relevant aspects of the geometry of pressure shadows in

non-linear rheologies are only implicit in the results of

Masuda, but are not discussed or explained there. Other

studies concerned with the numerical evaluation of pres-

sures around cylindrical objects, have focused on: (i) the

effects of the geometry of the object (Selkman, 1983), (ii)

the in¯uence of compaction (McKenzie and Holness, 2000),

(iii) the effects of coupling between object and matrix

(Kenkmann and Dresen, 1998; Kenkmann, 2000), or (iv)

the ¯ow ®eld around the object without any consideration

of the pressure ®eld (Pennacchioni et al., 2000). Some of

these studies have used experimentally-derived ¯ow laws as

a constitutive relationship and usually assumed constant

boundary conditions when exploring various power law

exponents. Both assumptions make it dif®cult to compare

the behaviour of linear and non-linear viscous rheologies

because they imply a variable effective viscosity in the far

®eld. Here we expand on these previous studies by present-

ing a careful evaluation (and comparison) of the effects of:

(i) the non-linearity of the rheological behaviour, and (ii) the

effective viscosity contrast. We also present a detailed

physical explanation of various aspects of the geometry of

pressure distribution, which has not been performed by

other studies.

2. Model formulation

For the calculation of pressures in the vicinity of objects

or inclusions, we use the ®nite element code BASIL by

Houseman, Barr and Evans (Barr and Houseman, 1996;

Bons et al., 1997; see also www.earth.monash.edu.au/

Research/Basil). This program solves the force balance

equations in two dimensions. These may be written as:

d

dcj

tij 1
d

dci

P � 0 �1�

where c is a coordinate in space, the i and j subscripts

represent the x or y directions and t ij is the deviatoric stress

tensor. P is pressure and is de®ned as the mean principle

stress: P � �s1 1 s2�=2. Within the sign convention of
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Fig. 1. Photomicrographs of natural examples of `pressure shadows' around porphyroblasts. (a) Micaschist from the high Himalayan crystalline complex,

central Bhutan showing chlorite growing as `strain caps' on a rigid garnet porphyroblast. The slightly asymmetric `pressure shadow' is ®lled with quartz.

Length of photo is 5 mm. (b) Example from the Plattengneiss shear zone, Austroalpine. A garnet crystal is surrounded by a slightly asymmetrically-oriented

pressure shadow of biotite. Length ca. 0.5 mm. (c) Recrystallisation tails on feldspar porphyroclast from the Plattengneiss. Length of photo is 3.5 mm. Crossed

Nicols. (d) Pressure fringe on a pyrite grain, ®lled with quartz. Length of the fringe ca. 10 mm. Crossed Nicols. Mineral abbreviations are: mu�muscovite,

g� garnet, bi� biotite, q� quartz, chl� chlorite, fsp� K-feldspar, py� pyrite.



Eq. (1), compressive stresses are negative and tensile

stresses are positive. This is opposite to the common geo-

logical convention for the sign of stresses but will be used

here. Thus, pressures are positive in the `pressure shadows'.

Also, note that all pressures are given relative to a far ®eld

pressure of zero.

In order to assign a deformation ®eld to the stresses

obtained from Eq. (1) we assume that rocks can be described

as a viscous ¯uid. This assumption is justi®ed for processes

that occur on a larger than sub-grain scale where individual

crystal ¯ow laws must be considered. For an incompressible

medium viscous behaviour may then be described by a

constitutive relationship in which stress and strain rate are

related by the relationship:

tij � B _E
1
n

21

� �
_e ij �2�

where _e ij is the strain rate tensor, _E is the second invariant of

the strain rate tensor and n is a power law exponent describ-

ing the non-linearity of the proportionality between stress

and strain rate. Strain rate is de®ned as:

_e ij � 1

2

dui

dcj

1
duj

dci

 !
�3�

where u is the velocity in either the x or the y direction.

Note that Eq. (2) describes a stress±strain rate relationship

which is isotropic with respect to strain rate. It is therefore

different from other possible descriptions of viscous

behaviour, for example: tij � B _en
ij: B is a scalable constant

that contains information about material constants and their

temperature dependence (England and McKenzie, 1982). If

n� 1, Eq. (2) reduces to tij � B _e ij and B is identical to

viscosity, B ; h , and has the units of Pa s. Then, the

pressure distribution in the shadow may be evaluated

analytically (see Appendix A) and we compare our numeri-

cal results with this solution. For non-linear viscous

rheologies, B is only a pre-exponent constant and the

viscosity is strain rate dependent. Then, it is only possible

to de®ne an effective viscosity given by the ratio of stress to

strain rate. From Eq. (2), this is given by:

h � B _E
1
n

21

� �
: �4�

Note that the abbreviation h is used for viscosity if n� 1

and for effective viscosity if n ± 1.

For linear viscous materials, the viscosity contrast

between two different materials is given by the ratio of

their viscosities, or the ratio of the constant B. In the calcu-

lations presented below we always assume that the matrix

viscosity is one, so that the viscosity contrast is given

directly by h .

For non-linear rheologies, the effective viscosity depends

on strain rate (Eq. (4)) and the viscosity contrast will be

different in different areas if they deform at different strain

rates, or under different stresses. We de®ne the viscosity

contrast between two materials for a stress state where

both deform under the same stress. Then, it can be shown

from Eq. (2) that the viscosity contrast is given by:

h � Bn
: �5�

For example, if the rheology contrast between a matrix and

an inclusion is set to 100 and n� 1, then: B� 100. If n� 3,

then: B� 100(1/3)� 4.642.

Our model solves the mechanical behaviour of an object

that is circular in shape in a matrix of in®nite extent in two

dimensions. Limitations of the model include: (i) a variation

of n in space leading to a transition between deformation

mechanisms e.g. volume creep and grain boundary sliding

(Frost and Ashby, 1982) and a variation of h . (ii) We did not

take into account the formation of clusters or the interaction

between different objects (see Biermeier et al., 2000). (iii)

Our model neglects the possiblity of mechanical strengthen-

ing around the rigid phase caused by the presence of the

inhomogeneity.
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Fig. 2. Model set up used in this paper. (a) Mesh and coordinate system. (b) Boundary conditions for the simulation of simple shear deformation. The axis r will

be used to interpret pressure pro®les in the shadows. Coordinates of r may also be given
����������
x2 1 y2

p
: The white dot along the r-axis near the object contact

indicates the location where we de®ne Pmax.



2.1. Meshing and geometry

In our numerical experiments we deformed a square box

with the side length 1 centred around the origin of a

Cartesian coordinate system with the axes x and y as

shown in Fig. 2(a). 164 grid nodes were de®ned in regular

intervals along the circumference of this box. In the centre

of the box, a circular region of diameter L� 0.2 was de®ned

by 80 coordinates. This size gives a good approximation of

the behaviour of pressure anomalies around circular objects

in a matrix of in®nite extent (Biermeier et al., 2000;

Pennacchioni et al., 2000; and also discussion Section

4.2). This geometry was triangulated with a self-triangula-

tion routine using Delaunay triangles which were allowed a

maximum area of 0.0005 and a minimum angle of 208. The

choice of triangle size and numbers of nodes along the

circumference of the circular region corresponds to a

numerical resolution of about 30 mm if scaled to a porphyro-

blast size of 1 mm. This is roughly equal to the resolution of

optical and electron microprobe methods and suf®ces there-

fore for most geological purposes. A single additional node

was inserted at x� 0.07212 and y� 0.07212, which is

located at a distance of L/100 from the contact of the inclu-

sion at 458 to the shear zone boundary (Fig. 2(b)). For a

scaled porphyroblast size of 1 mm diameter, this corre-

sponds to a distance of 10 mm from its contact. The circular

region was assigned a variable value of B and is assumed to

be fully-coupled to the matrix. The entire region of the box

was assigned a power law exponent n. As the matrix value

for B is assumed to be one, the assigned B value for the

circular region is the pre-exponent rheology contrast of the

inclusion relative to the matrix and the effective viscosity

contrast to the matrix is given by Eq. (5).

2.2. Boundary conditions and explored parameter space

In order to deform the initial geometry described above,

we assume the following boundary conditions. At the top (at

y� 0.5) we prescribe a constant velocity in the x direction

of ux� 0.5 in the dimension of length unit per time unit. At

the bottom of the box (at y�20.5) we prescribe a velocity

of the boundary of ux�20.5 (Fig. 2(b)). According to our

de®nition of strain rate in Eq. (3), this corresponds to a far-

®eld shear strain rate of _exy � 0:5: In the y direction, we

prescribe a constant stress boundary condition at the top and

bottom boundaries. Thus, the top and bottom boundaries are

allowed to move in the y direction in response to the stress

arising around the circular region in the centre of the grid.

This boundary condition approximates ideal simple shear

only in the far ®eld beyond the described region, but gives

the best approximation to simulate the stress state of

porphyroblasts in a matrix of in®nite extent (see discussion

Section 4.2).

The side boundaries are de®ned by the condition that both

components of traction and both components of velocity are

continuous from one side to the other side. This assumption

of a periodic boundary is analogous to deformation experi-

ments in a ring shear apparatus. For a meaningful com-

parison of linear and non-linear rheologies, velocity

boundary conditions and all results were scaled, so that

the integrated shear stress along the boundaries are always

the same (see Section 4.1).

We explored the stress state of cylindrical objects and

their surroundings for the viscosity contrast between

object and matrix and for the non-linearity of the

viscous behaviour as described by n. The variability

of the results was also explored as a function of object

size and boundary conditions. All numerical experi-

ments were performed for ®nite deformation, but we

con®ne our discussion largely to the results of the incremen-

tal time step. All results are presented in non-dimensional

form, so that they are independent of experimentally-

derived material constants. Their geological scaling is

discussed in Section 4.1.
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Fig. 3. Geometry of the pressure distribution for three different power law exponents labelled on the diagrams. The contours are independent of h and are

shown as fractions of P/Pmax between 0.1 and 0.6.



3. Results

The pressure ®eld around the circular objects may be

characterised by three parameters: (1) the spatial geometry

of the pressure ®eldÐin particular that of the pressure

shadows; (2) the spatial size of the pressure shadows; and

(3) the magnitude of the pressure in and around the circular

object. The results are discussed in terms of these three

aspects.

3.1. Geometry of the pressure distribution

Fig. 3 shows the distribution of pressure around circular

inclusions for three different n at the incremental time step.

Pressures are shown as fractions of the pressure maximum

on the boundary of the object. For the purpose of de®ning a

geologically meaningful pressure maximum, we de®ne as

Pmax the pressure of the additional grid node, de®ned in

Section 2.1. This is located at L/100 from the inclusion

contact and is therefore of the order of optical resolution

that may be obtained in thin section (Fig. 2(b)). A theore-

tical Pmax for the case where n� 1 may also be obtained

from the analytical solution presented in Appendix A. The

pressure contours outside the circular inclusion correspond

to what is loosely-called `pressure shadows' and will be the

principle focus of our attention. Fig. 3 is independent of the

viscosity contrast, as the geometry of the pressure shadow

depends only on the geometry of the object boundary and

not its viscosity contrast. For clarity, only the pressures in

the quadrants of the `pressure shadows' are shown, but it is

understood that the pressure distribution is symmetric about

the inclusion. Thus, corresponding pressure contours (of

opposite sign) would appear in this ®gure in the top left

and bottom right quadrants. Textural evidence for pressure

anomalies there, is often referred to (not quite correctly) as

`strain caps'.

Fig. 3 shows that the pressure distribution around the

inclusion is characterised by a continuous drop of pressure

along lines extending radially from the inclusion contact. At

contact, there is a discontinuity in the pressure ®eld (see

Appendix A). During linear viscous deformation (n� 1)

pressure shadows have a roughly circular shape. For non-

linear rheologies, the pressure shadows disintegrate into two

branches that extend at roughly 20 and 708 to the shear zone

boundaries, respectively. In these two directions, the

pressure shadows are actually longer than for the linear

case, while in the direction of the maximum pressure of

linear rheologies (458 to the shear zone boundary), the

pressure shadows become shorter for larger n. This effect

becomes stronger for larger n. In the following, we refer to

the shape of pressure shadows at large n, as in Fig. 3(b) and

(c), as `bone-shaped'. The difference of pressure geometry

as a function of n arises because of small differences in the

¯ow-®eld between linear and non-linear rheologies. Masuda

and Mizuno (1996; ®gs. 4 and 5) and Pennacchioni et al.

(2000; ®g. 3c) showed that differences in the ¯ow-®eld do

exist, but were not aware of their importance to the geometry

of the pressure shadows and thus, refrained from interpreting

their signi®cance. In essence the different geometries of the

pressure shadows for n� 1 and n . 1 arise from changes in

the uy component of the velocity ®eld. This has the conse-

quence that the trace of the in¯ection points of the ¯ow lines
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Fig. 4. (a) Pressures normalised against Pmax as a function of r (distance from the object centre) in units of L/2. Curves are shown for values of n between 0.8

and 20. r is labelled in units of L/2 measured from the centre of the inclusion. (b) The size of the pressure shadow d measured in direction of r as a function of n.

The subscript (P/Pmax) indicates that d is measured in terms of the P/Pmax ratio. Curves are shown for P/Pmax� 0.1, 0.2 and 0.5. The shaded region shows the

geologically relevant range of n.



around the object is at steeper angles to the shear zone

boundaries for larger n, which ultimately determines the

geometry of the pressure ®eld.

3.2. Size of the pressure shadows

The size of the pressure shadows can be best described in

a pro®le through the pressure shadows along the instanta-

neous stretching axis, oriented at 458 to the shear zone

boundaries (r-axis on Fig. 2(b)). Using this axis has also

the advantage that the pressure along it can be directly

compared with the analytical solution of Eq. (11). Fig.

4(a) shows such pressure pro®les for different n. Akin to

the geometry of the pressure shadows, these pro®les are

independent of the viscosity contrast if they are normalised

at the maximum pressure Pmax.

It may be seen that the pressure decreases from Pmax,

along an exponential curve and merges asymptotically

into the far-®eld pressure at large distances from the object.

Along this pro®le, the pressure drops more rapidly for larger

n than for smaller n. In comparison with the result of Eq.

(11), however, the analytical solution (thick line in Fig. 4(a))

provides a slightly different pressure pro®le along the r-axis.

From Pmax, the slope of the curve is steeper than for the

numerical solution for n� 1 and reaches slightly smaller

values. This difference may be explained by the resolution

of the numerical simulation very close to the boundary of

the object (between the exact boundary at r� 1 and our

reference point 10 mm away from the object). Note that

the relationship between pressure as a function of distance

and n may be different along different pro®les. For example,

if we consider the pressure drop along pro®les that trace the

points of maximum pressure of individual ¯ow lines (i.e. at

22.58 relative to the x-axis), then the pressure would drop

more rapidly for small n and slower for large n (Figs. 3 and

4(a)).

Here, however, we continue interpreting pro®les along

pro®les in direction r. In order to de®ne the spatial size of

the pressure shadows, we de®ne this by the distance d,

where pressure drops below a given ratio of P/Pmax. For

example, if the maximum pressure difference Pmax relative

to the lithostatic pressure is around 2 kbar, then P/Pmax� 0.1

corresponds to 0.2 kbar and implies that within the pressure

shadow, pressure is between 2 and 0.2 kbar higher than in

the far-®eld. Values below 0.2 kbar pressure difference

belong in this case to the matrix. In Fig. 4(b) d is plotted

as a function of n for P/Pmax� 0.1, 0.3 and 0.5. It may be

seen that the pressure shadow along this axis extends to very

large distances from the inclusion for n , 1, but becomes

small but constant for large n. Note, however, that d only

drops with increasing n, if it is de®ned by a ratio of P/Pmax as

done here. If it is de®ned by a given pressure exceeding the

matrix pressure (for example by the size of the region where

P . 100 MPa), then the size of the pressure shadow will

depend on h , as well as n. The scaling of the size to real

pressure values will be done in Section 4.1.

3.3. The magnitude of the pressure shadow

In contrast to the geometry and size of the pressure

shadows, the magnitude of pressure is a strong function of

the viscosity contrast, h . In Fig. 5 we explore the depen-

dence of Pmax on h for a range of n. It may be seen that Pmax

increases with increasing viscosity contrast and approaches

a constant for h �1. For Newtonian rheologies this

constant value is given by Eq. (12). Clearly, at h � 1,

Pmax is also zero. At small viscosity contrasts, Pmax increases

rapidly with h and the rate of increase of Pmax with h
decreases, even on a logarithmic scale (Fig. 5). The magni-

tude of Pmax also depends on n. It is larger for smaller n.

Note that this important result is for the assumption that

linear and non-linear rheologies may be compared when

the integrated shear stresses at the boundaries are equal

(see boundary conditions as well as the next section). The

shape of the curves is similar for all n and viscosities. For all

n more than 90% of the possible Pmax is reached at h � 100

(log(h)� 2). At much larger h the dimensionless Pmax

reaches asymptotically Pmax < 0.8, 1.2 and 1.8, for n� 5,

3 and 1, respectively. The maximum curvature of the Pmax

versus log(h )-curves is for all n roughly at h � 10. At high

viscosity contrasts the analytical solution is shown as a

reference line for the values of Pmax. The value for n� 1

at in®nite viscosity contrast is Pmax� 1.5 and differs there-

fore around 15% from the numerical results.

4. Discussion

4.1. Geological scaling of non-dimensional model results

The geological scaling of the non-dimensional results of

Figs. 3±5 is different for linear and non-linear rheologies.

For linear viscous rheologies, (n� 1), it is straightforward.
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Fig. 5. Pmax as a function of h (logarithmic plot) for different n. Note that

the results for different n are scaled for equal integrated shear stress at the

boundaries.



For example, if we choose a non-dimensional model

viscosity of h � 1 to correspond to a geological value of

h g� 1022 Pa s, and a non-dimensional model strain rate of 1

to correspond to _eg � 10214 s21 then a non-dimensional

model pressure of P� 1 means a pressure of Pg � hg _eg �
100MPa: The subscript `g' is used for scaling values so that

they are not confused with the non-dimensional values for h
or _e ij used in Figs. 3±5. Thus, in Fig. 5, a viscosity contrast

of 100 and n� 1 implies a Pmax of about 180 MPa for these

scaling factors of strain rate and viscosity assumed above.

h � 100 in the above example also implies that the

inclusion has a viscosity of h g� 1024 Pa s. Thus, in Fig.

3(a), the 0.1 contour will correspond to 18 MPa for

h � 100.

In Fig. 3(a) the maximum distance of the P/Pmax� 0.1

contour is located at a distance of 1.3L from the inclusion

contact, for n� 1. However, if the size of the pressure

shadow is measured by the distance over which P exceeds

a given absolute pressure difference relative to the matrix,

then the size of the pressure shadow is strongly dependent

on h . To illustrate this, we show in Fig. 6(a) a scaled repro-

duction of Fig. 4(a) for n� 1. This, and equivalent ®gures

for different n may be constructed by combining Figs. 4(a)

and 5. In Fig. 6(b), d indicates the distance over which a

given pressure is exceeded along r. The subscript `MPa'

indicates that d is measured here in terms of real pressures.

It is shown that there is no pressure shadow larger than

100 MPa for n� 3 below about h < 7 (assuming scaling

values as above of _eg � 10214 s21 and h g� 1022 Pa s). At

h � 50, the size of the pressure shadow that experiences

pressures above 100 MPa is about L/8. The size of the pres-

sure shadow within which 10 MPa is exceeded is larger. For

h � 50 the distance, where pressure experiences 10 MPa is

< 1.7L at n� 1 and 1L for n� 3.

In order to compare the results of the non-linear rheolo-

gies with those of the linear case we compare them when the

integrated shear stresses along the model boundaries ( �s xy at

y� 0.5 and y�20.5) are the same for both rheologies. As

all numerical experiments were performed with the same

velocity boundary conditions, this implies that the results

were scaled by the factor:

F � �s xy�n�1;y�0:5�= �s xy�n±1;y�0:5�:

For example, if in the linear case �s xy�n�1;y�0:5� � 1 on the

shear zone boundary and �s xy�n�3;y�0:5� � 1:3 for n� 3, then

all non-linear stresses for n� 3 were scaled by the factor

1/1.3 in the Figs. 3, 5 and 6, which may now be compared

directly.

Fig. 5 shows that, for n� 3 and 5 (and assuming scaling

values as above of _eg � 10214 s21 and h g� 1022 Pa s), Pmax

in the pressure shadow reaches 120 and 80 MPa, respec-

tively. These pressures are 66 and 44% of those reached

in linear viscous materials, respectively.

The distance where 10 or 100 MPa of pressure in the

pressure shadow is exceeded (as shown in Fig. 6(b)) also

decreases for increasing n. For the 10 MPa distance the shift

between the three curves for n� 1, 3 and 5 is larger than for

the 100 MPa distance for a given h .

4.1.1. Geological magnitude of h
The geological scaling discussed above depends on the

strain rate and on the viscosity. The former is known to vary

in the geologically relevant range of _eg � 10212 s21 to
_eg � 10215 s21. The latter is not very well known, but
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abundant studies have attempted to constrain rock

viscosities using laboratory conditions that are then extra-

polated to geologically reasonable temperatures and strain

rates. Such laboratory experiments derive the material

constants in terms of a power law of the general form:

Ds � _e g

A

� � 1
n

e
Q

nRT

� �
�6�

where Ds � (s 1 2 s 2), is the differential stress in Pa, _e g is

strain rate in s21, A is a pre-exponent constant in Pa2n s21, Q

is the activation energy in J mol21, R is the gas constant, T is

absolute temperature and n is the stress exponent. A series

of experimental data for quartz and their relationship (Eq.

(6)) are shown in Fig. 7(a). The thick line indicates the set of

data (Shelton and Tullis, 1981), which was used to explore

the magnitude of h in Fig. 7(b). According to England and

McKenzie (1982) B in Eq. (2), is:

B � A2
1
n e

Q
nRT

� �
and hg � Ds

_e g

� B _e

1
n

21

� �
g : �7�

In Fig. 7(b), the effective viscosity is shown for a range of

temperatures and for three different strain rates. With

increasing temperature, h g decreases from about 1024 Pa s

at 2008C to 1019 Pa s at 7008C for a given strain rate of _eg �
10214 s21

: For faster strain rates, h g is smaller at the same

temperature. For a temperature of < 3708C (which is realis-

tic for ductile deformation of quartz) and a strain rate of
_eg � 10214 s21, the effective viscosity h g is 1022 Pa s and

the pressure deviates by 100 MPa from lithostatic (shaded

lines in Fig. 7(b)); however, the geological strain rates and

viscosities can differ by 2 orders of magnitude. This also

in¯uences the geological pressures. For example, h g for

quartz is 1020 Pa s at 6008C for _eg � 10214 s21
: Therefore,

pressure is only 106 Pa or 1 MPa different from lithostatic.

In summary, for a geologically realistic range of strain rates

and viscosities, the pressures in the pressure shadow can vary

between 1 and 100 MPa pressure difference. For higher meta-

morphic conditions the local stress differences around rigid

objects are likely to be smaller than for lower conditions.

4.2. The in¯uence of object size

In our experiments we have followed Pennacchioni et al.

(2000) and Masuda and Mizuno (1996) and have chosen an

object size of L� 0.2 as a good approximation for the

behaviour of the stress state of porphyroblasts in an

in®nitely wide shear zone. Strictly speaking, however, this

is only true for L! 0 where the distance of object to the

shear zone boundaries, D� (1 2 L)/L, goes towards

in®nity. Biermeier et al. (2000) showed that the rotation

rate of cylindrical objects may be strongly dependent on

D even for L , 0.2. Because of this problem, Masuda and

Ando (1988) and Masuda and Mizuno (1996) forced a rota-

tion rate of the cylindrical object, _v ; to be _v � _exy=2 as part

of their boundary conditions. This is the rotation rate of an

object in an in®nite matrix under simple shear (Ghosh,

1975; Jeffrey, 1922). Because of the discrepancies of the

rotation rate inforced as a boundary condition by Masuda

and Ando (1988) and the rotation rate obtained as a result by

Biermeier et al. (2000) for the same L, it is necessary to

re-investigate the robustness of the magnitude of pressure

shadows as a function of L. We explored this function using

Pmax as an illustrative parameter, for a variety of boundary

conditions.

Fig. 8 shows the in¯uence of object size on Pmax for

linear rheologies. For the boundary conditions used above

(continuous lines in Fig. 8) it may be seen that boundary
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effects become only signi®cant for L . 0.7. This result is

not very dependent of the viscosity contrast. Thus, the

assumption of L� 0.2 is a safe approximation for D!1.

We also explored this in¯uence for different non-linearities

(not shown in Fig. 8) with the same result. Interestingly, the

magnitude of pressure is much more robust to object size

than the rotation rate (Biermeier et al., 2000).

We also investigated the magnitude of Pmax for boundary

conditions that approximate ideal simple shear better than

those assumed in this paper. For this, we assumed `®xed

plate boundary conditions' (dashed lines in Fig. 8; see

also, Bons et al., 1997). These differ from those used in

this paper in that the y component of the boundary condi-

tions at the top and bottom boundaries is de®ned by uy� 0

(in contrast to the t yy� 0 used for Figs. 3±6). These condi-

tions approximate the conditions of shear box experiments

or those of narrow shear zones of constant width. Fig. 8

shows that, for small L, Pmax is the same for both sets of

boundary conditions. This is because both the boundaries

are effectively in®nitely distant from the porphyroblast. For

the `®xed plate condition', however, the boundary condi-

tions in¯uence the pressure shadow for L . 0.3. The `®xed

plate' boundary conditions have a much stronger in¯uence

on the pressure shadow than the stress boundary conditions,

because the limited space between ®xed shear zone bound-

aries and cylindrical object strongly changes the stress

pattern. For L� 0.2 (assumed in this paper) the difference

in Pmax for different boundary conditions is less than 5%.

Thus, it is justi®ed to interpret the results for L� 0.2 to be

representative of the behaviour of pressure shadows around

porphyroblasts in a matrix of in®nite extent. We emphasise,

however, that the magnitude of pressure shadows given in

Figs. 3±6 is a minimum. If porphyroblasts in rocks are

closer than D� 4 from the shear zone boundaries, the

magnitude of pressure in the pressure shadows may increase

dramatically.

4.3. Geological relevance

Three observation-related questions on pressure shadows

around porpyroblasts in polyphase metamorphic rocks may

be discussed in terms of the results presented in the last

sections. (1) What is the signi®cance of the size and

geometry of pressure shadows in real rocks in terms of the

results of Fig. 3? (2) What is the signi®cance of the fact that

pressure shadows are commonly observed, while pressure

highs (`strain caps') in the opposite quadrants are much

smaller in spatial extent? (3) What is the signi®cance of

the fact that the minerals that grow in pressure shadows

around porphyroblasts are often products of metamorphic

decompression reactions? This question arises as Figs. 4±6

suggest that local, rather than lithostatic decompression

may be responsible for such reactions. In the following we

discuss these questions individually.

4.3.1. Geological interpretation of the geometry

Figs. 3±6 suggest that it should be possibleÐin

principleÐto infer n and h from the geometry and size of

pressure shadows in real rocks. These ®gures also suggest

that pressure shadows in rocks should be `bone-shaped'. In

most natural rocks, however, `pressure shadows' are

triangular in shape and generally smaller than the porphyro-

blast near which they occur (Fig. 1a±c). Pressure fringes

like that shown in Fig. 1(d) are `bone-shaped', but do not

form as a function of processes discussed here (for discus-

sion of their formation see KoÈhn et al., 2000). We suggest

that this is because what is loosely referred to as `pressure

shadows' is a feature that does not correspond to pressure.

Rather, it is a zone of high or low strain, which is oriented

obliquely to the pressure maxima and parallel to the shear

zone boundaries (compare Fig. 3). In order to test the

in¯uence of ®nite deformation on the geometry and position

of the incremental pressure shadow, we have performed a

®nite deformation experiment for which we assumed that a

rheologically more viscous phase has grown in the incre-

mental pressure shadow at the onset of deformation (Fig.

9(a)). The result is shown in Fig. 9(b).

During ®nite strain, the material of the matrix and the

pressure shadow is coupled with the object and therefore

rotated counterclockwise to form a weak d -shape. This is

shown in Fig. 9(b) around the left-hand porphyroblast,

where the deformed shape of the phase assumed to have

grown in the incremental pressure shadow of (a) is shaded.

It may be seen that the two branches of the pressure shadow

on the top right of the porphyroblast behave differently with

increasing strain. While the upper branch is elongated

during ductile ¯ow, the lower branch is much less

in¯uenced by ®nite deformation. This is because, in the

V. Tenczer et al. / Journal of Structural Geology 23 (2001) 777±788 785

Fig. 8. The in¯uence of the object size L on Pmax, at n� 1. This relationship

is shown for two different viscosity contrasts h and two different sets of

boundary conditions approximating simple shear in the far ®eld. The

continuous lines are for the boundary conditions used in this paper, the

dashed lines for `®xed plate' boundary conditions. The shaded arrow

marks the object size used in this paper.



horizontal direction on both sides of the porphyroblast, there

is a zone of low strain rate. We de®ne this zone as strain rate

shadow, where the principle strain rate reaches a minimum.

This zone is indicated by the horizontal band of coarse

triangulation in Fig. 9(b). With increasing strain, the two

branches may coalesce, parallel to the ®nite ¯ow direc-

tionÐthis may correspond to the triangular shape which

can be observed in natural rocks. It is important to realise

that both areas outlined in Fig. 9(b) (the deformed incre-

mental pressure shadow on the left and the high strain zone

on the right) are not the pressure shadow at the shown time

step of ®nite deformation. This has a complicated shape

because of the additional rheology contrast imposed by

the phase grown in the incremental pressure shadow. We

have also calculated an example of a rheologically weaker

phase grown in the pressure shadow. Under these conditions

the results show even better the effect of ®nite deformation

on the distribution of material that has grown in the pressure

shadows.

The equivalents to the pressure shadows in the opposite

quadrants are the strain caps. The strain caps are equal in

geometry and size but the magnitude is opposite in sign.

Strain caps can ®rstly be the result of solution processes

caused by local stress differences and therefore contain

only the residual minerals that are not soluble. They can

often be observed in low-grade rocks. For the correct inter-

pretation of this kind of strain caps, it would be necessary to

apply a ¯ow law describing pressure-solution-precipitation-

creep. Secondly, minerals are newly grown in the compres-

sive quadrant around the porphyroblast (as shown in Fig.

1(a)). For these, the assumption of power law ¯ow as the

dominating deformation mechanism may be suf®cient. The

reason why strain caps occur smaller in thin sections may

also be explained in terms of ®nite strain. Minerals that are
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Fig. 9. Illustration of ®nite deformation of an incremental pressure shadow, which was instantaneously ®lled by a third phase at the incremental time step

(grey-shaded region) (n� 5). (a) Initial situation (compare Fig. 3(c) for the shape of the pressure shadow). The two porphyroblasts have a viscosity contrast to

the matrix of h � 100, while the phase grown in the pressure shadow is characterised by h � 2. (b) represents (a) after ®nite simple shear strain of 3. For

illustration, the deformed shape of the phase grown in the incremental pressure shadow of (a) is shown for the left porphyroblast and the region of maximum

strain accumulation is outlined (thick line) around the right hand porphyroblast.



growing in the strain cap are continuously transported away

by the ¯owing matrix, whereas the part of the pressure

shadow that is located in the strain rate shadow also survives

high strains, so the strain caps are often completely

destroyed by high strain.

4.3.2. Geological evidence for local decompression

In Fig. 1(b), biotite is located preferentially in the

pressure shadows behind garnet. In rocks with the peak

paragenesis, garnet±muscovite±quartz is biotite a typical

retrograde reaction product during decompression of the

rocks from the metamorphic peak. Traditionally, this

decompression reaction has been interpreted as a result of

the decrease of the lithostatic stress during exhumation of

rocks. However, in Fig. 1(b), biotite grows in the pressure

shadows around garnet at the expense of muscovite, while

muscovite in the matrix is often unaffected by this reaction.

Thus, it is possible that the growth of biotite is related to a

local decompression around the rigid garnet and not to a

decrease in lithostatic stress. For the bulk composition of

the rock in Fig. 1(b) it has been shown that for every

100 MPa of decompression the volumetric proportions of

biotite increases by about 5 vol% on the expense of about

2 vol% muscovite and 1 vol% garnet (StuÈwe and Powell,

1995; Tenczer and StuÈwe, 1999). This will be within the

pressure differences of Fig. 7 and therefore indicates that

®nite strain does not in¯uence the magnitude of the pressure

in the pressure shadow as much as it in¯uences the

geometry. StuÈwe and Sandiford (1994) have also shown

that the crust can support deviatoric stresses of up to

about 100 MPa and that localised decompression can result

in `clockwise' P±T paths while other regions show `anti-

clockwise' P±T evolution. Therefore, P±T paths that are

based on a few points in P±T space without the contribution

of the textural relationship may not represent the real history

of the rock during metamorphism. The question that arises

now is how to translate the pressure gradients that do exist

around circular rigid objects into reaction gradients, which

has not been performed until now. Based on this ®nite

element simulation done with BASIL, the program package

ELLE (www.earth.monash.edu.au/Research/Elle) will have

the ability to contribute to the application of pressure

gradients onto reaction gradients to solve questions of

respective ®eld examples and contribute to answering the

question of the role of differential stress during the history of

tectono-metamorphic events.

5. Conclusions

1. The geometry of the pressure shadows around circular

porphyroblasts is a function of the stress exponent n but

independent of the rheology contrast between object and

matrix. It is roughly circular in shape for n� 1, but

disintegrates into two branches for n . 1 so that it becomes

`bone-shaped' at geologically relevant n� 3 or 5.

2. The magnitude of the pressure in the pressure shadow is a

function of both the viscosity contrast and n, even at large

viscosity contrasts. Thus, it is conceivable that different

pressures may be measured in pressure shadows behind

different porphyroblasts, if these have a different rheology.

This effect is true up to high rheology contrasts and

becomes even stronger at high n.

3. Scaling of pressures with experimentally-derived material

constants leads to a large spread of pressure over several

orders of magnitude, for geologically reasonable strain

rates and temperatures. Pressure deviations from the far

®eld up to about 200 MPa, however, are easily possible

at geologically relevant strain rates and viscosities. There-

fore, care should be taken when interpreting barometric

results in the vicinity of texturally-observed `pressure

shadows'.
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Appendix A

The numerical results presented in this paper may be

compared with an analytical solution describing the pres-

sure ®eld around a circular rigid inclusion (h !1)

immersed in a Newtonian matrix. If we only consider the

pressure as a function of distance from the inclusion along

the r-axis (as we did in Figs. 4±6), the Navier Stokes equa-

tion (in polar coordinates) may be written as:

dP

dr
� h

1

r2

d

dr
r2 dur

dr

� �
2

2ur

r2

� �
�8�

where the radial velocity is ur �
����������
u2

x 1 u2
y

q
(from Turcotte

and Schubert, 1982, Eq. 6-195). The radial ¯ow along the

r-axis for pure shear deformation is:

ur � 1

2
_exy

r2 2 1
� �2

r3
�9�

(from Cox et al., 1968, Eq. 12). Substituting Eq. (9) into Eq.
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(8) leads to:

dP

dr
� _exyh

2

4

r3
1

4

r5

� �
: �10�

This gives the pressure gradient dP=dr � 4 _exyh at r� 1,

which is the contact of the inclusion. Integrating Eq. (10)

gives P as a function of r:

P � _exyh

2

2

r2
1

1

r4

� �
�11�

which satis®es P! 0 on r!1. From Eq. (11), the maxi-

mum pressure at the contact of the inclusion (at r� 1) is

given by:

Pmax � 3
2
_e xyh: �12�

The simple solution presented above does not consider

rotation of the inclusion, nor does it consider simple shear

deformation. Both, however, may be neglected becauseÐin

Newtonian rheologiesÐsolutions for rotational and dis-

tortional components of deformation may be superimposed

and the rotational component is not associated with a

pressure ®eld.

References

Barr, T.D., Houseman, G.A., 1996. Deformation ®elds around a fault

embedded in a non-linear ductile medium. Geophysical Journal

International 125, 473±490.

Biermeier, C., StuÈwe, K., Barr, T.D., 2001. The rotation rate of cylindrical

objects during simple shear. Journal of Structural Geology 23, 765±776.

Bons, P.D., Barr, T.D., ten Brink, C.E., 1997. The development of (-clasts

in non-linear viscous materials: a numerical approach. Tectonophysics

270, 29±41.

Carter, N.L., Tsenn, M.C., 1987. Flow properties of continental lithosphere.

Tectonophysics 136, 27±63.

Cox, R.G., Zia, I.Y.Z., Mason, S.G., 1968. Particle motions in sheared

suspensions. Journal of Colloid and Interface Science 27, 7±18.

Edward, G.H., Etheridge, M.A., Hobbs, B.E., 1982. On the stress depen-

dence of subgrain size. Textures and Microstructures 5, 127±152.

England, P., McKenzie, D., 1982. A thin viscous sheet model for conti-

nental deformation. Geophysical Journal of the Royal Astronomical

Society 70, 295±321.

Ernst, W.G., 1971. Do mineral parageneses re¯ect unusually high pressure

conditions of Franciscan metamorphism?. American Journal of Science

270, 81±108.

Frost, H.J., Ashby, M.F., 1982. Deformation Mechanism Maps. Pergamon

Press, Oxford 167pp.

Ghosh, S.K., 1975. Distortion of planar structures around rigid spherical

bodies. Tectonophysics 18, 185±208.

Gleason, G.C., Tullis, J., 1995. A ¯ow law for dislocation creep of quartz

aggregates determined with the molten salt cell. Tectonophysics 247,

1±23.

Jeffrey, G.B., 1922. The motion of ellipsoidal particles immersed in a

viscous ¯uid. Proceedings of the Royal Society London 102, 161±179.

Ji, S., Martignole, J., 1994. Ductility of garnet as an indicator of extremely

high temperature deformation. Journal of Structural Geology 16, 985±

996.

Kenkmann, T., 2000. Processes controlling the shrinkage of porphyroclasts

in gabbroic shear zones. Journal of Structural Geology 22, 471±478.

Kenkmann, T., Dresen, G., 1998. Stress gradients around porphyroclasts:

palaeopiezometric estimates and numerical modelling. Journal of

Structural Geology 20, 163±173.

Koch, P.S., 1983. Rheology and microstructures of experimentally

deformed quartz aggregates. Ph.D. Dissertation, University of

California, Los Angeles, 464pp.

Koch, P.S., Christie, J.M., Ord, A., George, R.P., 1989. Effect of water on

the rheology of experimentally deformed quartzite. Journal of

Geophysical Research 94, 13975±13996.

KoÈhn, D., Hilgers, C., Bons, P.D., Passchier, C.W., 2000. Numerical simu-

lation of ®bre growth in antitaxial strain fringes. Journal of Structural

Geology 22, 1311±1324.

Mancktelow, N.S., 1993. Tectonic overpressure in competent ma®c layers

and the development of isolated eclogites. Journal of Metamorphic

Geology 11, 801±812.

Masuda, T., Ando, S., 1988. Viscous ¯ow around a rigid spherical body: a

hydrodynamical approach. Tectonophysics 148, 337±346.

Masuda, T., Mizuno, N., 1996. De¯ection of non-Newtonian simple shear

¯ow around a rigid cylindrical body by the ®nite element method.

Journal of Structural Geology 18, 1089±1100.

Masuda, T., Mizuno, N., Kobayashi, M., Ngoc Nam, T., Otoh, S., 1995.

Stress and strain estimates for Newtonian and non-Newtonian materials

in a rotational shear zone. Journal of Structural Geology 17, 451±454.

McKenzie, D., Holness, M., 2000. Local deformation in compacting ¯ows:

development of pressure shadows. Earth and Planetary Science Letters

180, 169±184.

Passchier, C.W., Trouw, R.A.J, 1996. Microtectonics. Springer-Verlag,

Berlin-Heidelberg.

Paterson, M.S., Luan, F.C., 1990. Quartzite rheology under geological

conditions. In: Knipe, R.J., Rutter, E.H. (Eds.). Deformation

Mechanisms, Rheology and Tectonics. , pp. 299±307 Geological

Society Special Publication 54.

Pennacchioni, G., Fasolo, L., Cecchi, M.M., Salasnich, L., 2000. Finite-

element modelling of simple shear ¯ow in Newtonian and non-

Newtonian ¯uids around a circular rigid particle. Journal of Structural

Geology 22, 683±692.

Petrini, K., Podladchikov, Y., 2000. Lithospheric pressure±depth relation-

ship in compressive regions of thickened crust. Journal of Metamorphic

Geology 18, 67±78.

Post, A.D., Tullis, J., Yund, R.A., 1996. Effects of chemical environment on

dislocation creep of quartzite. Journal of Geophysical Research 101,

22143±22155.

Rutland, R.W.R., 1965. Tectonic overpressures. In: Pitcher, W.S., Flynn,

G.W. (Eds.). Controls of Metamorphism. Verl. Oliver and Boyd,

Edinburgh, pp. 119±139.

Selkman, S.O., 1983. Stress and displacement distribution around pyrite

grains. Journal of Structural Geology 5, 47±52.

Selkman, S.O., 1978. Stress and displacement analyses of boudinages by

the ®nite-element method. Tectonophysics 44, 115±139.

Shelton, G.L., Tullis, J., 1981. : Experimental ¯ow laws for crustal rocks.

EOS, Transactions of the American Geophysical Union 62, 396.

Shimamoto, T., 1975. The ®nite element analysis of the deformation of a

viscous spherical body embedded in a viscous medium. Journal of the

Geological Society of Japan 81, 255±267.

StroÈmgaÊrd, K.E., 1973. Stress distribution during formation of boudinage

and pressure shadows. Tectonophysics 16, 215±248.

StroÈmgaÊrd, K.E., 1974. Stress-induced diffusion during folding. Tectono-

physics 22, 233±251.

StuÈwe, K., Powell, R., 1995. PT paths from modal proportions.

Applications to the Koralm Complex, Eastern Alps. Contributions to

Mineralogy and Petrology 119, 83±93.

StuÈwe, K., Sandiford, M., 1994. Contribution of deviatoric stresses to meta-

morphic P±T paths: an example appropriate to low-P, high-T meta-

morphism. Journal of Metamorphic Geology 12, 445±454.

Tenczer, V., StuÈwe, K., 1999. Some constraints on strength and rheology of

the Plattengneiss shear zone (Koralm±Austroalpine). Mitteilungen des

Naturwissenschaftlichen Vereins fuÈr Steiermark 129, 43±53.

Turcotte, D.L., Schubert, G., 1982. Geodynamics. Applications of

Continuum Physics to Geological Problems. John Wiley and Sons,

New York, p. 264.

V. Tenczer et al. / Journal of Structural Geology 23 (2001) 777±788788


